Stack Stack

Stack

The Natural stack is a kind of "intermediate storage" in which you can store Natural commands, user-defined
commands, and input data to be used b\NBUT statement.

The following topics are covered:

Use of Natural Stack
Stack Processing
Placing Data in the Stack
Clearing the Stack

Use of Natural Stack

In the stack you can store a series of functions which are frequently executed one after the other, such as a series of
logon commands.

The data/commands stored in the stack are "stacked" on top of one another. You can decide whether to put them on
top or at the bottom of the stack. The data/command in the stack can only be processed in the order in which they are
stacked, beginning from the top of the stack.

In a program, you may reference the system varfddTA to determine the content of the stack (seeSystem
Variables documentatidior further information).

The total size of the stack is defined by the remaining portion iIE$&E buffer after allocation for the global data
area and the program source area.

Stack Processing

The processing of the commands/data stored in the stack differs depending on the function being performed.

If a command is expected, that is, the NEXT prompt is about to be displayed, Natural first checks if a command is on
the top of the stack. If there is, the NEXT prompt is suppressed and the command is read and deleted from the stack;
the command is then executed as if it had been entered manually in response to the NEXT prompt.

If an INPUT statement containing input fields is being executed, Natural first checks if there are any input data on
the top of the stack. If there are, these data are passed to the INPUT statededimifer mod¢; the data read from

the stack must be format-compatible with the variables in the INPUT statement; the data are then deleted from the
stack.

If an INPUT statement was executed using data from the stack, and this INPUT statement is re-executed via a
REINPUT statement, the INPUT statement screen will be re-executed displaying the same data from the stack as
when it was executed originally. With the REINPUT statement, no further data are read from the stack.

When a Natural program terminates normally, the stack is flushed beginning from the top until either a command is
on the top of the stack or the stack is cleared. When a Natural program is terminated via the terminal command
"%%" or with an error, the stack is cleared entirely.

Placing Data on the Stack

The following methods can be used to place data/commands on the stack:

Copyright Software AG 2003 1



Clearing the Stack Stack

® STACK Parameter
® STACK Statement
e FETCH and RUN Statements

STACK Parameter

The Natural profile paramet&TACK may be used to place data/commands on the stack. The STACK parameter,
which is described in the Natural Parameter Reference documentation, can be specified by the Natural administrator
in the Natural parameter module at the installation of Natural; or you can specify it as a dynamic parameter when
you invoke Natural.

When data/commands are to be placed on the stack via the STACK parameter, multiple commands must be
separated from one another by a semicolon (;). If a command is to be passed within a sequence of data or command
elements, it must be preceded by a semicolon.

Data for multiplelNPUT statements must be separated from one another by a colon (). Data that are to be read by a
separate INPUT statement must be preceded by a colon. If a command is to be stacked which requires parameters, nc
colon is to be placed between the command and the parameters.

Semicolon and colon must not be used within the input data themselves as they will be interpreted as separation
characters.

STACK Statement

The STACK statement can be used within a program to place data/commands in the stack. The data elements
specified in one STACK statement will be used for IMRUT statement, which means that if data for multiple
INPUT statements are to be placed on the stack, multiple STACK statements must be used.

Data may be placed on the stack either unformatted or formatted:

e If unformatted data are read from the stack, the data string is interpreted in delimiter mode and the characters
specified with the session parameté&gInput Assignment character) atial (Input Delimiter character) are
processed as control characterskieywordassignment and data separation.

e |If formatted data are placed on the stack, each content of a field will be separated and passed to one input field
in the corresponding INPUT statement.

See the Natural Statements documentation for further information @T&kEK statement

FETCH and RUN Statements

The execution of EETCH or RUN statement that contains parameters to be passed to the invoked program will
result in these parameters being placed on top of the stack.

Clearing the Stack

The contents of the stack can be deleted with the RELEASE statement. See the Natural Statements documentation
for details on théRELEASE statement

Note:
When a Natural program is terminated via the terminal comn?a8d' 'br with an error, the stack is cleared entirely.

2 Copyright Software AG 2003



	Stack
	Use of Natural Stack
	Stack Processing
	Placing Data on the Stack
	STACK Parameter
	STACK Statement
	FETCH and RUN Statements

	Clearing the Stack


